

Ce document a été mis en ligne par l'organisme FormaV®

Toute reproduction, représentation ou diffusion, même partielle, sans autorisation préalable, est strictement interdite.

CORRIGE

Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

Brevet de Technicien Supérieur Contrôle industriel et régulation automatique

CORRIGÉ-BARÈME sur 40 POINTS

Première partie : (10 points)

I. Étude dans les conditions nominales d'un moteur alimenté par le réseau E.D.F.

	Au point nominal de fonctionnement :	
I.1	Puissance utile	0,5
	Puissance nominale	0,5
I.2.1	Couplage étoile	0,5
1.2.1	Tension nominale aux bornes d'un enroulement 230 V	0,5
I.2.2	ns=1000 tr/min; ns = 16.67 tr/s; ns = 16.67 Hz	0,5
	18,12	
I.2.3	p = 3; 3 paires de pôles; 6 pôles	0,5
1.1.2.4	g=0.04 ; 4 %	0,5
I.3.1	$P_a \approx 1730 \text{ W}$	0,5
1.3.2	Q _a = 1165 var	1
1.3.3	I = 3 A	0,5
1.3.4	T _u =14.9 N.m	1,0

II- Étude du moteur alimenté directement par le variateur

П.1	k=8 V.Hz ⁻¹	0,5
П.2.1	Document réponse Nom et position de bloc Fonctions	1 1
II.2.2.1	U=200 V	0,5
II.2.2.2	n=460 tr/min	0,5

CAE3PA

Deuxième partie : (4 points)

I. choix du transformateur

I.1	m = 0,105	0,5
1.1	Transformateur abaisseur	0,5
1.2	V _{2v} =24.2 V	0,5
I.3	$I_2 = 7,74 \text{ A}$ $I_1 = 0,808 \text{ A}$	0,5 0,5
I.4	S = 186 VA	0,5
I.5	Le transformateur convient pour ses caractéristiques I _{IN} = 850 mA	1,0

<u>Troisième partie</u> : (26 points)

A.I. <u>Étude du capteur d'angle et de l'adaptateur</u>

A.I.1	Courants d'entrée nuls $(i=i^+=0)$;	0,5
	impédance d'entrée infinie	0,5
	Impédance de sortie nulle	0,5
1	Gain en boucle ouverte infini	0,5
	Sum on source out of the mann	0,5
A.I.2	Contre réaction ; sortie bouclée sur entrée inverseuse	0,5
A.1.2	Régime linéaire	0,5
	Regime inicane	0,3
	$(1-\alpha)P$	1
A.I.3	$V_P = \frac{(1-\alpha)P}{R+P}V_{cc}$	1
	A I I	
A.I.4	$V_P = 5. (1 - \alpha)$	1
111111	77 31(1 2)	
A.I.5	$V_1 = V_p$; $V_1 = 5.(1 - \alpha)$	1
74.1.5	$v_1 v_p, v_1 = s.(1-u)$, and a second
A.I.6	Montage suiveur; adaptation d'impédance	0,5
11.1.0	Wontage surveur, adaptation d'impedance	'
)	θ	
A.I.7	$\alpha = \frac{\theta}{360}$	0,5
	360	,
A.I.8	Oust \Rightarrow Est $\alpha = 90^{\circ}$	0,5
A.1.0	Cust > List u >0	
	Est \Rightarrow Ouest $\alpha=270^{\circ}$	0,5
	W	
A.I.9	$V_1 = a\theta + V_{10}$ $a = -\frac{5}{360} \text{ V/}^{\circ}$	1
	5 17/0	0,5
	$a = -\frac{1}{360}$ V/	0,5
		0,5
	$V_{10} = 5V$	0,3

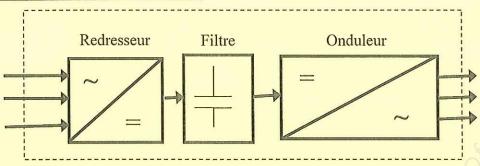
CAE3PA

A.II- Étude du conditionneur de signal

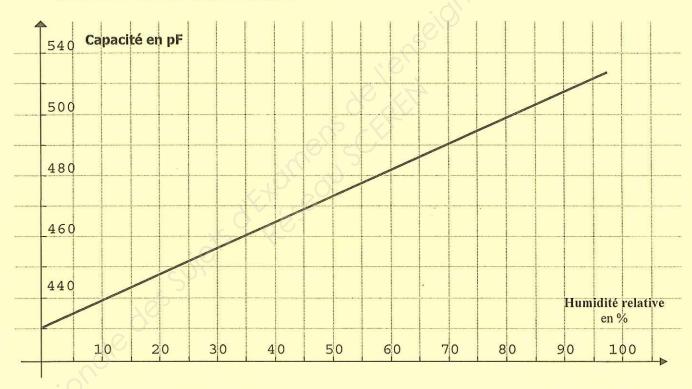
A.II.1	$v_{E-} = \frac{1}{2} (v_1 + v_d)$	1
A.II.2	$V_{E+} = \frac{R_0}{R + R_0} V_{cc}$	1
A.II.3	$R_0 = 333 \Omega$	1 5
A.II.4	$V_d = V_{10} - V_1$ $k = \frac{1}{72} V/^{\circ}$	1
	72	

A.III. choix d'un CAN

A.III.1	Nmax = 63	0,5
A.III.2	$U_{PE} = 5 \text{ V}$	0,5
A.III.3	$q = \frac{UPE}{2^6} = 0.078 \text{ V}; q=78 \text{ mV}$	0,5
	$\Theta_{\min} = (5.6)^{\circ}$	0,5
	vent sud-ouest vers nord-est	1
A.III.4	$\theta = 45^{\circ}$; N = 8	1
A.III.5.1	q'=28 mV	1
A.III.5.2	$n = \frac{ln(\frac{5}{0.027})}{ln2} = 7.5 \text{ soit } n = 8 \text{ bits}$	1


B. Modélisation du capteur

B.1	Sensibilité ; $s = 0.85 \text{ pF/\%HR}$ Décalage de zéro ; $C_0 = 430 \text{ pF}$	1 1
B.2	D'après graphe ; C ≈ 465 pF	1


CAE3PA

Document réponse

• Première partie : Question II.2.1

• Deuxième partie : Question B.2

